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ABSTRACT 
We introduce Fresnel’s ideas in optics to the field of acoustics. Fresnel analysis provides an effective, intuitive approach to the understanding 
of complex interference phenomena and thus opens the road to establishing the criteria for the effective coupling of sound sources and for the 
coverage of a given audience geometry in sound reinforcement applications. The derived criteria form the basis of what is termed Wavefront 
Sculpture Technology. 
 

0 INTRODUCTION 
This paper is a continuation of the preprint presented at the 92nd 
AES Convention in 1992 [1]. Revisiting the conclusions of this 
article, which were based on detailed mathematical analysis and 
numerical methods, we now present a more qualitative approach 
based on Fresnel analysis that enables a better understanding of the 
physical phenomena involved in arraying discrete sound sources. 
From this analysis, we establish criteria that define how an array of 
discrete sound sources can be assembled to create a continuous line 
source. Considering a flat array, these criteria turn out to be the 
same as those which were originally developed in [1]. We also 
consider a variable curvature line source and define other criteria 
required to produce a wave field that is free of destructive 
interference over a predefined coverage region for the array, as 
well as a wave field intensity that decreases as the inverse of the 
distance over the audience area. These collective criteria are 
termed Wavefront Sculpture Technology1 (WST) Criteria. 
 
1 MULTIPLE SOUND SOURCE RADIATION - A REVIEW 
The need for more sound power to cover large audience areas in 
sound reinforcement applications implies the use of more and more 
sound sources. A common practice is to configure many 
loudspeakers in arrays or clusters in order to achieve the required 

                                                 
1 Wavefront Sculpture Technology and WST are trademarks of L-
ACOUSTICS 

sound pressure level (SPL). While an SPL polar plot can 
characterize a single loudspeaker, an array of multiple 
loudspeakers is not so simple. Typically, trapezoidal horn-loaded 
loudspeakers are assembled in fan-shaped arrays according to the 
angles determined by the nominal horizontal and vertical coverage 
angles of each enclosure in an attempt to reduce overlapping zones 
that cause destructive interference. However, since the directivity 
of the individual loudspeakers varies with frequency, the sound 
waves radiated by the arrayed loudspeakers do not couple 
coherently, resulting in interference that changes with both 
frequency and listener position. 
 
Considering early line array systems (column speakers), apart from 
narrowing of the vertical directivity, another problem is the 
appearance of secondary lobes outside the main beamwidth whose 
SPL can be as high as the on-axis level. This can be improved with 
various tapering or shading schemes, for example, Bessel 
weighting. The main drawback is a reduced SPL and, for the case 
of Bessel weighting, it was shown that the optimum number of 
sources was five [2]. This is far from being enough for open-air 
performances.  
 
In [1] we advocated the solution of a line source array to produce a 
wave front that is as continuous as possible. Considering first a 
flat, continuous and isophasic (constant phase) line source, we 
demonstrated that the sound field exhibits two spatially distinct 
regions: the near field and the far field. In the near field, wave 
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fronts propagate with 3 dB attenuation per doubling of distance 
(cylindrical wave propagation) whereas in the far field there is 6 
dB attenuation per doubling of distance (spherical wave 
propagation). It is to be noted that usual concepts of directivity, 
polar diagrams and lobes only make sense in the far field (this is 
developed in appendix 1). 
 
Considering next a line source with discontinuities, we also 
described a progressively chaotic behavior of the sound field as 
these discontinuities become progressively larger. This was 
confirmed in 1997 [3] when Smith, working on an array of 23 
loudspeakers, discovered that 7 dB SPL variations over 1 foot was 
a common feature in the near field. Smith tried raised cosine 
weighting approaches in order to diminish this chaotic SPL and 
was somewhat successful, but it is not possible to have, at the same 
time, raised cosine weighting for the near field and Bessel 
weighting for the far field. In [1] we showed that a way to 
minimize these effects is to build a quasi-continuous wave front. 
 
The location of the border between the near field and the far field 
is a key parameter that describes the wave field. Let us call dB the 
distance from the array to this border. We will make the 
approximation that if F is the frequency in kHz then λ=1/(3F) 
where λ is the wavelength in metres. Considering a flat, continuous 
line source of height H that is radiating a flat isophasic wavefront, 
we demonstrated in [1] that a reasonable average of the different 
possible expressions for dB obtained using either geometric, 
numerical or Fresnel calculations is: 

 

( )FH
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3
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2
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where dB and H are in meters, F is in kHz. 
 
There are three things to note about this formula: 
1) The root factor indicates that there is no near field for 
frequencies lower than 1/(3H). Hence a 4 m high array will radiate 
immediately in the far field mode for frequencies less than 80 Hz.  
2) For frequencies above 1/(3H) the near field extension is almost 
linear with frequency.  
3) The dependence on the dimension H of the array is not linear 
but quadratic. 
 
All of this indicates that the near field can extend quite far away. 
For example, a 5.4 m high flat line source array will have a near 
field extending as far as 88 meters at 2 kHz.  

We also demonstrated in [1] that a line array of sources, each of 
them radiating a flat isophase wave front, will produce secondary 
lobes not greater than –12 dB with respect to the main lobe in the 
far field and SPL variations not greater than ± 3 dB within the near 
field region, provided that: 
♦ Either the sum of the flat, individual radiating areas covers 

more than 80% of the vertical frame of the array, i.e., the 
target radiating area 

♦ Or the spacing between the individual sound sources is 
smaller than 1/(6F) , i.e., λ/2. 

These two requirements form the basis of WST Criteria which, in 
turn, define conditions for the effective coupling of multiple sound 
sources. In the following sections, we will derive these results 
using the Fresnel approach along with further results that are useful 
for line source acoustical predictions. 
 
Figure 1 displays a cut view of the radiated sound field. The SPL is 
significant only in the dotted zone (ABCD + cone beyond BC). A 
more detailed description is deferred to Section 4. 
 

Figure 1: 
Radiated SPL of a line source AD of height H. In the near field, the 
SPL decreases as 3 dB per doubling of distance, whereas in the far 
field, the SPL decreases as 6 dB per doubling of distance. 
 
It should be noted that different authors have come up with various 
expressions for the border distance: 

dB = 3H    Smith [3] 
dB = H/π    Rathe [4] 
dB = maximum of (H , λ/6)       Beranek [5] 

Most of these expressions omit the frequency dependency and are 
incorrect concerning the size dependence. Figure 2 illustrates the 
variation of border distance and far field divergence angle with 
frequency for a flat line source array of height = 5.4 m. 
 
 

Figure 2: 
Representation of  the variation of border distance and far field divergence angle with frequency for a flat line source 
array of height 5.4 metres. 
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2 THE FRESNEL APPROACH FOR A CONTINUOUS LINE 
SOURCE 
The fact that light is a wave implies interference phenomena when 
an isophasic and extended light source is looked at from a given 
point of view. These interference patterns are not easy to predict 
but Fresnel, in 1819, described a way to semi-quantitatively picture 
these patterns. Fresnel's idea was to partition the main light source 
into fictitious zones made up of elementary light sources. The 
zones are classified according to their arrival time differences to 
the observer in such a way that the first zone appears in phase to 
the observer (within a fraction of the wave length λ). The next 
zone consists of elementary sources that are in-phase at the 
observer position, but are collectively in phase opposition with 
respect to the first zone, and so on. A more precise analysis shows 
that the fraction of wave length is λ/2 for a 2-dimensional source 
and  λ/2.7 for a 1-dimensional source (please see appendix 2 for 
further details). 
 
We will apply Fresnel’s concepts to the sound field of extended 
sources. Let us consider first a perfectly flat, continuous and 
isophasic line source. To determine how this continuous wave 
front will perform with respect to a given listener position, we 
draw spheres centered on the listener position whose radii are 
incremented by steps of λ/2 (see figures 3 and 4). The first radius 
equals the tangential distance that separates the line source and the 
listener. Basically two cases can be observed: 
 
1. A dominant zone appears:  
The outer zones are alternatively in-phase and out-of-phase. Their 
size is approximately equal and they cancel each other out. We can 
then consider only the largest, dominant zone and neglect all 
others. We assume that this dominant zone is representative of the 
SPL radiated by the line source. This is illustrated in Figure 3 
where it is seen that for an observer facing the line source the 
sound intensity corresponds roughly to the sound radiated by the 
first zone. 
 
2. No dominant zone appears in the pattern and almost no sound is 
radiated to the observer position. Referring to figure 4, this 
illustrates the case for an off-axis observer.  
 

 
Figure 3: 
Observer facing the line source. On the right part (side view), 
circles are drawn centered on the observer O, with radii 
increasing by steps of λ/2. The pattern of intersections on the 
source AB is shown on the left part (front view). These define the 
Fresnel zones. 

 
Figure 4: 
The observer O, is no longer facing the line source. The 
corresponding Fresnel zones are shown on the left part (front 
view). There is no dominant zone and individual zones cancel each 
other off-axis. 
 
Moving the observation point to a few locations around the line 
source and repeating the exercise, we can get a good qualitative 
picture of the sound field radiated by the line source at a given 
frequency.  
 
Note that the Fresnel representations of figures 3 and 4 are at a 
single frequency. The effects of changing frequency and the on-
axis listener position are shown in Figure 5. 
 

 
Figure 5:  
The effect of changing frequency and listener position.  
 
As the frequency is decreased, the size of the Fresnel zone grows 
so that a larger portion of the line source is located within the first 
dominant zone. Conversely, as the frequency increases, a reduced 
portion of the line source is located inside the first dominant zone. 
If the frequency is held constant and the listener position is closer 
to the array, less of the line source is located within the first 
dominant zone due to the increased curvature. As we move further 
away, the entire line source falls within the first dominant zone. 
 
3 EFFECTS OF DISCONTINUITIES ON LINE SOURCE 
ARRAYS  
In the real world, a line source array results from the vertical 
assembly of separate loudspeaker enclosures. The radiating 
transducers do not touch each other because of the enclosure wall 
thicknesses. Assuming that each transducer originally radiates a 
flat wave front, the line source array is no longer continuous. In 
this section, our goal is to analyze the differences versus a 
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continuous line source in order to define acceptable limits for a 
line source array. 
 
Let us consider a collection of flat isophasic line sources of height 
D, with their centers spaced by STEP. To understand the sound 
field radiated by this array, we replace the real array by the 
coherent sum of two virtual sources as displayed in figure 6. The 
real array is equivalent to the sum of a continuous line source and  
a disruption grid which is in phase opposition with this perfect 
continuous source. 
 

 
Figure 6: 
The left part shows a real array consisting of sources of size D 
spaced apart by STEP. The right part shows two virtual sources 
considered as a perturbation and a continuous ideal source. Their 
sum is equivalent to the real array. 
 
3.1 Angular SPL of the Disruption Grid 
The pressure magnitude produced by the disruption grid is 
proportional to the thickness of the walls of the loudspeaker 
enclosures. Figure 7 illustrates how to predict the effect of the 
disruption grid in particular directions at a given frequency. The 
complex addition of the virtual sound sources of the grid creates an 
interference pattern that cannot be neglected, unless by reducing 
their size. 
 

 
Figure 7: 
When the observer position is very far, Fresnel circles are 
transformed into segments. The left figure shows that when 
observing at the angle θdip, half the sources are in phase opposition 
with the other half thus producing a null pressure. On the right, it 
is seen that as we move further off-axis, all sources are in phase 
thus producing a strong pressure.  
 
Let us perform Fresnel analysis for an observer at infinity. In this 
case, circles crossing the grid become straight lines. Now let us 
consider the interference pattern as a function of polar angle. In the 
forward direction (θ = 0), all sources appear in phase. At θdip, half 
the sources are in phase and the other half are in phase opposition, 
thus they cancel each other and the resulting SPL is very small. At 
θpeak, all sources are back in phase and produce an SPL as strong as 
in the forward direction. 
 

Therefore, the discontinuities in a line source generate secondary 
lobes outside the beamwidth whose effects are proportional to the 
size of the discontinuities. This is the first reason why it is 
desirable to attempt to approximate a continuous line source as 
closely as possible. 
 
From this qualitative approach, we understand that secondary lobes 
appear in the sound field due to the grid effect. The angles where 
the secondary peak and the secondary dip arise are given by:  
 

  )sin( λθ =peakSTEP  

 2/)sin( λθ =dipSTEP  

 
If the first notch appears at θdip > π/2, it will not be detrimental to 
the radiated sound field. This translates to: 

STEP 6
1   1) sin( dip ≤⇒≥ Fθ  

As before, F is in kHz and STEP is in meters. Alternatively, 
expressing STEP in terms of wavelength: 

2
λ≤STEP   

In other words, the maximum separation or STEP between 
individual sound sources must be less than λ/2 at the highest 
frequency of the operating bandwidth in order for the individual 
sound sources to properly couple without introducing strong off-
axis lobes. 
 
As an example, if STEP = 0.5m, notches will not appear in the 
sound field provided that F < 300 Hz. In the next section, we 
intend to quantify the disruption due to the walls of enclosures and 
to establish limits on the spacing between radiating transducers. 
 
3.2 The Active Radiating Factor (ARF) 
Now we have to do some math to determine the superposition of 
pressure. The pressure delivered by the ideal continuous source in 
the far field is: 

θ
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The pressure of the disruption grid is: 
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Where D is the active radiating height of an individual sound 
element as shown in Figure 6. 
 
In the forward direction, i.e: θ = 0, we have: 
 

Hpcontinuous ∝= )0(θ  

 
))(1()0( DSTEPNpdisrupt −+−∝=θ  

))(1( DSTEPNHppp disruptcontinuousreal −+−∝+=
 
Since H = N STEP we have:  
 



HEIL, URBAN AND BAUMAN  WAVEFRONT SCULPTURE TECHNOLOGY 
 
 

AES 111TH CONVENTION, NEW YORK, NY, USA, 2001 SEPTEMBER 21–24 5 

STEPDNpreal −+∝= )1()0(θ  

 
At the secondary peak we have: 
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We now have to define an acceptable ratio for the height of a 
secondary lobe with respect to the main on-axis lobe. Based on the 
pattern of a perfect line source that produces secondary lobes in the 
far field not higher than –13.5 dB of the main lobe, it seems 
optimal to specify in our case a –13.5 dB ratio. Therefore we 
require:  
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We define the Active Radiating Factor (ARF) as: 

STEP
DARF =  

thus, 

)
)1(73.4

11(82.0
+

+≥
N

ARF  

 
Therefore, when N is large, we find that ARF has to be larger than 
82% if the secondary peak is to be 13.5 dB below the main forward 
peak. This confirms what was originally obtained in [1]. Note that 
a secondary peak of only 10dB below the main forward peak is 
obtained when ARF is equal to 76%. ARF is thus a factor which 
has to be carefully looked at. 
 
When N is large, a practical formula relating ARF to the 
attenuation of the secondary side lobes in decibels, Atten(dB), is: 
 

101

1

20
)(dBAttenARF
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Note: Frequency dependency does not show up in the final formula 
for ARF. This is because we have assumed that the angle θpeak was 
between 0 and π/2. However, it should be noted that if the 
frequency is low enough there will be no secondary peak and this 
is the only way that frequency dependency can enter into this 
calculation. 
 
3.3 The First WST Criteria and Linear Arrays  
Assuming that the line array consists of a collection of individual 
flat isophasic sources, we have just redefined the two criteria 
required in order to assimilate this assembly into the equivalent of 
a continuous line source as derived in [1]. These two conditions are 
termed Wavefront Sculpture Technology (WST) criteria: 
♦ The sum of the individual flat radiating areas is greater than 

80% of the array frame (target radiating area) or 
♦ The frequency range of the operating bandwidth is limited to 

F<1/(6 STEP), i.e., the STEP distance between sources is less 
than λ/2. 

Note: further WST criteria will be derived in the following 
sections. 
 
For a slot whose width is small compared to its height D, ARF is 
D/STEP. For the case of touching circular sound sources, the 
average ARF is π/4 =75%. It is therefore impossible to satisfy the 
first criterion and for circular pistons the only way to avoid the 
secondary lobes is to specify that the maximum operating 
frequency be less than 1/(6D). In other words, the diameter of a 
circular piston has to be smaller than 1/(6F). While this is possible 
for frequencies lower than a few kHz it becomes impossible at 
higher frequencies. For example, at 16 kHz we would need 
touching pistons with diameters of a few millimeters.  
 
From this example, we understand that there is a challenge as to  
how to fulfil the first criterion at higher frequencies. One solution 
might consist of arraying rectangular horns in such a way that their 
edges touch each other. However, an important consideration is 
that such devices do not radiate a flat isophasic wave front. Then, 
the next question to be answered becomes: how flat does the wave 
front have to be in order for the sources to couple correctly? 
 
Let us consider a collection of vertically arrayed horns, separated 
only by their edges. The radiated wave front exhibits ripples of 
magnitude s, as shown in figure 8. The most critical case occurs at 
high frequencies where the wavelength is becoming small, e.g., 2 
cm at 16 kHz. According to Fresnel, when standing in the far field 
the radiated wavefront curvature (s), should not be greater than 
half the wavelength, i.e., 1 cm at 16 kHz. Unfortunately, the 
conditions are much more restrictive in the near field when 
considering high frequencies. 
 

 
Figure 8: 
This illustrates that vertically arraying conventional horns will not 
produce a flat wave front. 
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Figure 9 displays the calculated SPL versus distance for a line 
array of 30 horns, 0.15 m high, each of them producing a curved 
wave front of 0.3 m (ripple s = 10 mm). Comparison with a flat 
line source shows chaotic behavior of the line array, starting at 8 
kHz and increasing with frequency. Apart from severe fluctuations 
in the SPL at higher frequencies, there is also a 4 dB loss at 16 kHz 
from 10 - 100 metres. 
 

 
Figure 9: 
SPL vs distance for a vertical array of 30 horns (total height = 4.5 
m, wavefront curvature s=10 mm) calculated at 2, 4, 8 and 16 kHz. 
White dots: line array, black dots: continuous line source. 
 
Another comparison displayed in figure 10 illustrates the cross 
section of the beam width which exhibits strong secondary peaks 
in the near field (20 m) at frequencies higher than 8 kHz. 
 

 
Figure 10: 
SPL along a vertical path, 20 m away from the vertical array of 30 
horns (total height = 4.5 m, wavefront curvature s=10 mm) 
calculated at 2, 4, 8 and 16 kHz. White dots: line array, black dots: 
continuous line source. 
 
 

It is therefore necessary to reduce wave front curvature by half (s < 
5 mm), in order to create an “as good as” perfect line source up to 
16 kHz. In effect, this will shift the sidelobe pattern observed in 
Figure 10 and the on-axis behaviour observed in Figure 9 from 8 
kHz to 16 kHz. We conclude by stating that the deviation from a 
flat wave front should be less than λ/4 at the highest operating 
frequency (corresponding to 5 mm  at 16 kHz).  
 
For this reason, a waveguide has been specifically developed in 
order to generate a flat, isophasic wavefront at the exit of the 
device. The patented DOSC waveguide is incorporated in several 
commercially-available sound reinforcement systems that are 
designed to perform in accordance with WST criteria. 
 
For the frequency range of 1.3 - 16 kHz, the sound pressure of a 
circular piston (i.e., the output of a compression driver) is passed 
through the waveguide where all possible acoustic path lengths are 
identical in length. This produces a wave front that is flat and 
isophasic (constant phase) at the rectangular aperture of the 
opening (see figure 11). This geometric transformation from 
circular to rectangular creates a wavefront that is sufficiently flat to 
satisfy the limits of acceptable curvature derived above and 
experiments have shown that wavefront curvature is less than 4 
mm at 16 kHz. When multiple DOSC waveguides are vertically 
arrayed, this allows for satisfaction of the 80% ARF criterion 
provided that the angle between adjacent enclosures is less than 5 
degrees (see section 6.2 for further details). 
 

 
 
 

 
Figure 11: 
WST Criteria Illustrated. On top we see the central portion of the 
DOSC waveguide that geometrically sets all possible sound path 
lengths to be identical from the circular entrance to the 
rectangular exit of the device, thus producing a flat, isophasic 
source for the high frequency section. The bottom figure shows a 
stack of 5 such devices (including the outer housing) which 
produces a vertical, flat sound source satisfying WST criteria 1. 
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4 SOUND FIELD RADIATED BY A FLAT LINE SOURCE 
ARRAY 
 
4.1 Radiation as a Function of Distance 
Considering a flat line source array, we want to understand why 
there is a near field (cylindrical wave propagation) and a far field 
(spherical wave propagation) and to derive an expression for the 
border distance. We will use Fresnel analysis to locate the border 
between the two regions (see [1] for analytical calculations). 
 
Let us consider a flat line source array of N discrete elements, 
operating at a given frequency. The observer is moving along the 
main axis of the radiation, as shown in figure 12. As the observer 
moves away from the line source, the number of sources in the 
dominant zone, Neff, increases until it reaches the maximum 
number of available sources (h = H). Moving beyond this distance, 
the number of sources no longer varies. 
 

 
Figure 12: 
The first Fresnel zone height is h. This height grows as distance d 
increases until h = H. At greater distances, no more increase of 
the radiated power is expected. 
 
Each source radiates a sound field as depicted in figure 1. We will 
place ourselves in the far field of each source (where spherical 
propagation applies). It will be detailed in section 6.2 that the 
condition that we are located in the far field of each element 
implies certain restrictions on the tilt angles between adjacent 
elements. 
 
The total pressure magnitude is thus proportional to: 

STEPARF
d

N
p eff

eff ∝  

while the SPL is proportional to the square of peff.  
 
We need to know how Neff (or h) varies with the listener distance. 
From figure 12, we calculate: 
 

)2/(4 λλ +== dhSTEPN eff  

 
For λ<<d, we have two simplified formulations for the SPL 
depending on the size of h:  
 
When h < H: 
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We verify that as long as Neff < Nmax, the SPL decreases as 1/d, 
defining the cylindrical wave propagation region. It is simple to 
extract the expression for border distance dB. 
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where dB and H are in meters, F is in kHz. The formula derived in 
[1] for F>>1/3H, is 3/2 FH2, therefore Fresnel analysis predicts that 
the border distance is 50% closer.  
 
When does a near field exist? With Fresnel we understood that as 
the distance of the listener decreases, the number of sources in the 
first zone decreases too, except for when λ/2 > H/2 because then 
the entire array is always in the first zone. Therefore, with Fresnel 
analysis, we have derived the same result as found in [1], i.e., there 
is no near field when F<1/(3H) 
 
There is, however, the basic fact that even a continuous source 
displays ripples in the SPL of the near field, but with magnitude 
less than ± 3dB about the average.  
 
This is the second reason for assigning ourselves the goal of 
producing a wave front as close as possible to a continuous sound 
source, i.e, in order to reduce ripples in the nearfield response. 
(recall that the first reason was in order to reduce sidelobe levels 
in the far field). 
 
To illustrate this, the array studied in [3] consists of 23 dome 
tweeters with diameters of 25 mm. The STEP is 80 mm. The 
second criterion for arrayability is that the frequency be less than 
1/(6STEP) = 1/(6*0.08) = 2 kHz. The first criterion is that for 
frequencies higher than 2 kHz, the ARF should be greater than 
80%. Here the ARF is less than 25/80=30%. and we can conclude 
that above 2 kHz, this array will exhibit severe problems in the 
near field.  
 
In figure 13, we compare the SPL of a continuous sound source 
1.76 m high, with the array of 23 tweeters and calculate the SPL as 
a function of distance at 1 and 8 kHz. We see that below 2 kHz the 
continuous and discrete arrays are similar while for higher 
frequencies, the discrete array shows unacceptable SPL ripples 
over very small distances. We also plot the -3 dB (near field) and 
the -6 dB (far field) lines predicted from our analysis. 
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Figure 13: 
SPL as a function of distance. Empty circles: 23 tweeters totaling a 
height of 1.76m. Full circles: a continuous array of the same 
height. The –3dB and the –6dB per doubling of distance lines are 
shown on the same figure to indicate the border between the near 
and far fields. 
 
4.2 Vertical Pattern in the Far Field 
With the help of Fresnel analysis, we now investigate the vertical 
directivity in the far field for a flat line array. The horizontal 
directivity is equivalent to that radiated by a single element. We 
saw previously in figures 3 and 4, that being off-axis radically 
changes the Fresnel zone pattern on the source. We want to show 
what happens with some simple examples. 
 
The pressure in the far field for a flat line array of height H is 
known analytically: 

2
sin

2
sinsin

)( θ

θ

θ
kH

kH

Hpressure








∝  

The first dip in pressure is given by: 
 

πθ =
2
sinHk

 

 

FHkHdip 3
12sin == π

θ  

 
Let us see how Fresnel analysis allows us to understand why and 
where there will be pressure cancellations in the far field. At a 
given frequency, we rotate around the source at a fixed distance, as 
shown in figure 14. 
 

 
 
Figure 14: 
A) The first Fresnel zone is larger than the height of the array 

and the entire array is in phase. 
B) As we turn around the array there may be an angle where 

half the array is in phase opposition to the other half. 
 
At Position A: we are standing in the far field region and the entire 
source is heard in phase so that we have maximum SPL.  
At Position B: we have cancellation since half the sources are in-
phase while the rest are out of phase. This occurs at the angle θdip 
(see Figure 15). 
 

 
Figure 15: 
Defining the quantities used to determine θdip. 
 
We want IJ to be equal to λ/2, thus: 

FHHdip 3
1sin == λ

θ  

 
This is exactly the same result as the analytical formula.  
 
Remarks: 
♦ We see here that the Fresnel approach does not give the exact 

functional behavior of the SPL. Instead it gives us, in a 
simple way, the characteristic points. We understand 
physically why there will be an angle where no SPL is 
produced and we can calculate that angle, but we cannot 
derive the sinx/x behavior. In more complex situations 
Fresnel will tell us the gross features of the sound field - if it 
comes to a point where we need more detailed information 
we will have to use numerical analysis, but the characteristic 
features are more easily understood with Fresnel analysis. 

 
♦ When staying on-axis, the sound field is cylindrical up to dB. 

We see now that moving just a bit off the main axis can cause 
the SPL to change tremendously. If there are several listeners 
at different positions and they are aligned on the main axis, 
then a flat array is fine. Most of the time, however, the 
audience is more off-axis than on-axis. 

IJ H
dip=

2
sinθ
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4.3 Vertical Pattern in the Near Field 
As stated above in Section 1 and [1], contrary to the far field, the 
SPL in the near field is not amenable to closed form expressions. 
This is unfortunate since the near field can extend very far, 
especially at higher frequencies. However, using Fresnel analysis, 
(as described in Section 2) we can describe the vertical pattern of 
the sound field in both the near and far fields. 
 
At this point, we would like to describe the SPL in the near field 
(dotted region of figure 1) in greater detail. The SPL as calculated 
along A'D' of figure 1 is shown in figure 16 (black points). For this 
example we have H = 4 m, the distance AA' is d = 9 m and the 
frequency is F = 4 kHz. Figure 16 shows that the SPL is nearly 
constant between A'D' until it drops to –6 dB at the edge of the 
array. We see also that as we go beyond the edge of the array, the 
SPL has decreased by more than 12 dB.  
 
The size of the first Fresnel zone is a very characteristic dimension 
and for this example its value is 1.5 m. It is predicted that the SPL 
will fall to –6 dB at the edge of the array and over half the first 
Fresnel zone distance. This is seen to be in excellent agreement 
with the results shown in figure 16. 
 
In figure 16 we also plot the SPL corresponding to the pressure in 
the far field (empty circles): 

θ

θ

sin
2

)sin
2

sin(

Hk

Hk
p farfield =  

This clearly illustrates that a polar plot or an angular formula that 
is valid in the far field is totally wrong in the near field. For further 
details, please see Appendix 1. 
 

 
Figure 16:  
Full circles: SPL along A'D' for a line source (H = 4 m) at a 
distance of 9 m, for F = 4 kHz. Empty circles: the SPL calculated 
using the analytical expression for the farfield directivity for the 
same line source. This is drawn along A'D', each point on A'D' 
defining the angle θ as shown in Figure 1. 
 

5 SOUND FIELD RADIATED BY A CURVED LINE 
SOURCE ARRAY 

 
5.1 Radiation as a Function of Distance 
Considering now a convex line source array of constant curvature, 
Fresnel analysis can be used to find the border between the near 
field and the far field at a given frequency. It will be shown in the 
following that this border distance is always further away for a 
convex line source than for a flat line source, depending on the 
radius of curvature. This surprising result raises a new question as 
to how the sound field behaves in the near field with respect to the 
far field. This question will be answered analytically in the 
following section where it will be seen that in some cases, the 
transition between near and far fields is asymptotic so that the 
difference in the sound field behaviour is less pronounced than as 
is for a flat sound source. 
 
However, at this point of the discussion we are aware that an 
extended sound source and, more specifically, a curved line source 
array cannot be assimilated to a point source that radiates a 
spherical wavefront. Attempts to represent the extended sound 
source with a point source model necessarily implies compromised 
results which turn out to be unacceptable when the sound source 
becomes large with respect to the considered wavelength. 
 
With reference to figure 17, when the observer is at position A, the 
flat line source (black vertical line) is not yet entirely in the first 
Fresnel zone, thus at A the field is cylindrical. Moving to position 
B, the flat line source is entirely in the first Fresnel zone and 
consequently we have reached the border between the near and far 
field for this kind of source. Curving the array in a convex shape, 
we realize that the listener position in the near field is extended 
provided that the curved source is not entirely included in the first 
zone. 
 

 
Figure 17: 
At position A, the field of the flat line source is cylindrical. At 
position B we have reached the border between near and far fields 
for the flat line source. By curving the array, we can place the 
listener farther away than B because the entire curved line source 
is not yet in the first Fresnel zone. 
 
Thus the far field of a curved array begins farther away than the 
corresponding one for a flat array. The amount of increase depends 
upon R, the radius of curvature of the array. Having R very large 
implies a border line slightly larger than for a flat source, as is 
expected, since the flat source is just a particular case of a curved 
array with R very large. Conversely, with a reduced radius of 
curvature, the near field can extend very far away from the array 
(potentially infinite). However, as seen below in Section 5.2, the 
tradeoff is that there is a reduction in the on-axis SPL in 
comparison with a flat line array. 
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5.2 Vertical Pattern of the Radiated Sound Field 
Although we do not have an analytical formula for the far field 
pattern of a curved line source, with Fresnel analysis we can see 
that a curved array projects a uniform sound field except near the 
edges. We place ourselves at infinity and instead of the Fresnel 
circles we draw straight lines. Figure 18 shows a curved array with 
constant curvature R. 

 
Figure 18: 
The left part shows a curved array AB and the first Fresnel zone in 
black for a listener position located at infinity. The right figure 
shows what happens for an observer far away and listening to the 
array at angle θedge. The size of the first Fresnel zone (in black)  is 
half of what it used to be. 
 
We get the same number of effective sources until we reach angle 
θedge where the number drops by a factor of 2. This corresponds to 
a 6 dB reduction in SPL and therefore defines the vertical 
directivity of the curved array. 
 
A curved array has a uniform SPL that is defined by the angles of 
its edges. A straight array is non-uniform but on-axis, projects a 
higher SPL. Therefore, the uniform vertical angular SPL of a 
curved array has a price.  We show in the following, that the SPL 
of a curved line source is, on average, 3 dB less than the on-axis 
SPL of a flat line source.  
 
In figure 19, we compare curved versus flat line source arrays. The 
height of both sources is 3 m and the radius of curvature is 5 m for 
the curved line source. For a frequency of 2 kHz,  dborder for the flat 
source is situated at 27 m. We calculate the SPL along a vertical 
line, 20 m away from the array. The curved source is still 
producing a cylindrical field at 20 m and it is seen in figure 19 that 
the vertical pattern of the SPL for the curved source is clearly less 
chaotic than that of the flat source. However, comparing the 
average SPLs between ± 1.5 m, the flat line array shows a 3 dB 
advantage over the curved array. 
 

 
Figure 19: 
Comparison of flat and curved line source arrays of the same 
height. The SPL is calculated on a vertical line 20 m away from the 
sources. It is apparent that the curved source presents less 
variation in its vertical SPL pattern but with reduced on-axis SPL. 
 
6 WAVEFRONT SCULPTURE TECHNOLOGY 
We have investigated two generic types of extended sound 
sources: the flat line source and the constant curvature line source. 
In an effort to adapt the shape of a line source to a specific 
audience geometry, we will now look at variable curvature line 
sources. In doing this, our intent is to focus more energy at the 
most remote listeners positions, while distributing the energy better 
at closer locations (see figure 20). 
 

 
Figure 20: 
Comparison between flat and variable curvature arrays. The SPL 
distribution of  the variable curvature array is adapted to suit the 
audience geometry.  
 
6.1 Radiation as a Function of Distance 
Using Fresnel analysis, we will consider the size of the dominant 
zone at various locations and distances from the array in order to 
determine how to optimize the shape of the line source to match 
the audience geometry requirements. Considering this approach, 
we are aware that the pressure magnitude of the array at one 
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location is proportional to the size of the dominant zone looked at 
from this position. We have seen in previous sections that the size 
is larger for a flat line source and gets smaller as the radius of 
curvature decreases. To formalize this, let’s calculate the size of 
the dominant zone with respect to the number of effective sound 
sources included in the first zone. 
 
Figure 21 displays the method used to calculate the size of the zone 
included in the gap [d, d+λ/2], d being the tangential distance from 
the listener to the array. As in section 4, the array consists of N 
discrete elements, each of them radiating a flat isophasic wave 
front and operating at a given frequency. These elements are 
articulated with angular steps to form an array of variable 
curvature.  
 

 
Figure 21: 
Nomenclature for the calculation of the size of the first Fresnel 
zone for a curved array. 
 
As in section 4.1, the total pressure magnitude is proportional to: 

STEPARF
d

Np eff
eff ∝  

 
while the SPL is proportional to the square of peff. 
 
The height of the first Fresnel zone is h (see figure 21) such that: 

( ) ( )θλ cos 2
4

2

2

2
RdRhd −++=+  

where 
θsin2Rh =  

 
We will use the small angle approximation for θ to get: 
 

 
from which we find that: 











++=+ 1

4

222424
R
d

Rd θθλλ  

 
The quantity θ2/4  is smaller than 1 and smaller than d/R, thus: 
 

4 2 2 4 2

1
R

d
d
R

θ
λ λ≈ +

+
 

The active height of the first Fresnel zone is: 
 

ARFRARFh θ2≈  
 
and the sound intensity from this zone is: 

( )
d

R
ARFI 2

2

2 2 θ
∝  

 
We now make the approximation that the closest listener is at a 
distance d that is larger than the wavelength of interest. 
 

STEP
ddF

ARFI curved α+
∝

1

11
3

4 2

 

 
where STEP is a constant and d is the distance to the listener. 
Recall that α is the tilt angle between adjacent radiating elements. 
This angle varies along the array and the radius of curvature R at a 
given point on the array is just STEP/α. The expression for a flat 
line array is obtained by setting α = 0. It is to be noted that this 
expression is valid provided that the curved line source array is not 
entirely included within the dominant Fresnel zone. This is the 
case for2: 

HF
STEP

23
4>α  

 
Three major results can be derived by comparing the above 
expression for Icurved with the expressions previously derived for a 
flat line source, i.e,: 
 

ARFFdI nearfield
flat

2

3
4∝  

 

ARF
d
HI farfield

flat
2

2

2

∝  

 
♦ For α = 0, the curved array is flat. The two expressions for 

Iflat and Icurved converge and both expressions demonstrate 
near field behaviour with cylindrical sound field propagation. 

 
♦ For α = constant, the transition between the near field and far 

field is smooth. At short distances where αd < STEP, the 
near field goes from cylindrical to spherical. At long 
distances where αd > STEP, the far field typically becomes 
spherical with an asymptotic limit for Icurved, that is: 

 

                                                 
2 Conversely, when α < (4 STEP)/ (3 F H2), 
 

d
ARFHI curved 2

22

∝  

 
This expression for Icurved typically applies at lower frequencies. 
 

λ λ θ θ θd R R d R+ = + +
2

4
2 4

4
2 2 2



HEIL, URBAN AND BAUMAN  WAVEFRONT SCULPTURE TECHNOLOGY 
 
 

AES 111TH CONVENTION, NEW YORK, NY, USA, 2001 SEPTEMBER 21–24 12 

dF
STEPARFI curved 2

2 1
3
4

α
∝  

 
♦ The interesting part comes when a constant value for αd is 

specified. This can be achieved by adapting the angular step 
α separating two adjacent sound sources to the distance d of 
their focus target on the audience. See figure 22 for an 
illustration of this.  Setting αd = K = constant throughout the 
entire audience profile, the expression for Icurved becomes: 

 

STEP
KARFFdI adapted

+
∝

1

1
3

4 2  

 
This expression shows a 1/d sound pressure level dependence, thus 
a 3 dB attenuation per doubling of the distance.  
 
Although exhibiting cylindrical behaviour for the sound field, it 
should be noted that the structure of the sound field has cylindrical 
effects (1/d dependence) on the audience only, while the 
propagation in a fixed direction (through the air), is still somehow 
in between cylindrical and spherical modes (according to previous 
considerations). 
  
For this reason, we will term the adapted sound field radiated by a 
variable curvature line source having αd constant as a pseudo-
cylindrical sound field. In addition, the method consisting of 
adapting the sound field to the audience geometry is termed 
Wavefront Sculpture. As a matter of fact, shaping the line source 
in such a way so that  αd = constant corresponds to an additional 
Wavefront Sculpture Technology criterion. 
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Figure 22: 
Illustration of wavefront sculpture where a variable curvature line 
array is designed so that αd=constant over the audience geometry. 
 
6.2 Limits On the Angular Incrementation of a Curved 
Line Source 
In section 3, we investigated  the effects of discontinuities on line 
source arrays. Another consideration for a variable curvature line 
source array is the amount of angular separation that is allowed 
between two discrete sources before lobing occurs. As shown in 
figure 23, each source individually radiates a near field over a 
distance that depends on its size and the frequency of interest. The 
SPL is mainly focussed in the dotted regions (recall figure 1) and 
the zone AC is a small SPL region. This defines a maximum 
separation angle between two discrete elements, based on the need 
to project a sound field with no discontinuities on the audience. 
Figure 23 is also interesting because it illustrates that the sound 
field can be bad in the air above the audience but that it will be fine 
on the audience. 
  
Note: even if there is no physical gap between the fronts of 
radiating elements, this region AC will still exist due to the fact 

that the elements are radiating flat wavefronts and are angled with 
respect to each other. 
 

 
Figure 23: 
Two sources separated by distance STEP and tilted by angle 
α with respect to each other. The SPL is shown as a dotted region. 
 
Let us define φ as the far field coverage angle of a single element 
at frequency F. Using a small angle approximation: 
 

STEPARF
λφ =  

The distance and angle that separate two adjacent elements are 
STEP and α , respectively.  In figure 23, the dotted zones represent 
the sound field of each source and the blank zone AC corresponds 
to a zone with poor SPL. We aim at reducing the blank zone and 
should clearly avoid allowing point C to reach the audience. 
 
Using the small angle approximation, the distance AC is given by: 

αφ −
=

2
STEPAC  

Rewriting φ in terms of frequency and specifying that AC is 
smaller than d, we have: 

d
STEP

STEPARFF
−<

3
2α  

where α is in radians, F in kHz and STEP is in meters. We require 
that α is greater than zero, thus: 

ARFF
dSTEP

3
2<  

 
The worst case is F=16 kHz and d=dmin, the minimum distance 
where a listener will be located. This corresponds to: 
 

ARF
d

STEP
24

min
max =  

 
Substituting STEPmax into the above expression for α we get the 
following expression for the maximum tilt angle αmax : 
 

( ) 












−=

STEP
STEP

STEP
STEP

d
STEP

max

max

min

max
max

2
1α  



HEIL, URBAN AND BAUMAN  WAVEFRONT SCULPTURE TECHNOLOGY 
 
 

AES 111TH CONVENTION, NEW YORK, NY, USA, 2001 SEPTEMBER 21–24 13 

From this expression it is seen that there is a tradeoff between the 
maximum element size and the maximum allowable inter-element 
angles, i.e., if we want to increase the angles between sources then 
we have to reduce the element size. 
 
As an example, let us consider dmin to be 10 meters. Since the 
diameter of a 15'' low frequency component is typically 0.40 m, 
this implies a minimum STEP of 0.44 m when we allow for  the 
additional thickness of the loudspeaker enclosure walls. When we 
take this minimum STEP value of 0.44 m we find for αmax the 
condition that: 

°−°= 6.27.5
max ARFα  

 
Since ARF must remain between 0.8 and 1, therefore αmax will be 
between 4.5° and 3.1°, which represents the maximum allowable 
angle between enclosures. 
 
What about the intensity? 

STEP
ddF

I α+
=

1

11
3
4

 

 
Assuming a STEP of 0.44 m,  dmin of 10 m and a frequency of 16 
kHz, we find that αd/STEP is of order 1. Therefore the intensity 
will be roughly a factor of 2 smaller (-3 dB) than the on-axis 
intensity of a straight array (α=0). 
 
7 CONCLUSION 
Our technique to understand and characterize the sound field 
radiated by linear arrays is the Fresnel approach in optics, as 
applied to acoustics. Fresnel analysis does not provide precise 
numerical results but gives a semi-quantitative, intuitive 
understanding. More precise results can come later using 
numerical analysis techniques, but only when one knows or can 
predict the answers in a semi-quantitative way. 
 
We tackled the problem of defining when an assembly of discrete 
sources can be considered equivalent to a continuous source and 
why a continuous source is desirable. We understood why a 
continuous line source exhibits two different regimes: when close 
to the source the SPL varies as 1/d (cylindrical wave propagation) 
and far away the SPL varies as 1/d2 (spherical wave propagation). 
We found that the position of the border is proportional to the 
frequency and to the square of the height of the array and also that 
for low enough frequencies there is no near field. 
 
Following this, by studying the properties of curved arrays using 
Fresnel analysis we determined conditions concerning the tilt 
angles between loudspeaker enclosures and the size of these 
enclosures required in order to provide a uniform cylindrical SPL 
over a given audience. 
 
Summarizing the Wavefront Sculpture Technology criteria for 
arrayability: 
 
For a flat array: 
♦ either the sum of the individual flat radiating areas covers 

more than 80% of the vertical frame of the array, i.e., the 
target radiating area 

♦ or the spacing between sound sources is smaller than 1/(6F) , 
i.e., less than λ/2 at the highest operating frequency 

♦ the deviation from a flat wavefront should be less than λ/4 at 
the highest operating frequency.  

 
 

For a curved array: 
The same criteria as for the flat array  plus 
♦ enclosure tilt angles should vary in inverse proportion to the 

listener distance. 
♦ the vertical size of each enclosure and the relative tilt angles 

between adjacent enclosures should conform within the limits 
established in section 6.2. 
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APPENDIX 1 
It is only in the far field region that directivity, polar plots and 
secondary lobes make sense. In the near field, these concepts 
cannot be used as they are greatly misleading. This is due to the 
fact that the line source cannot be represented as a point source in 
the near field since a polar diagram makes the assumption that the 
energy flow is radial. For example, in order to draw a polar plot we 
would measure the SPL along a circle like the one pictured on the 
right part of figure A1-1. This would result in the polar plot as 
shown on the left part of the figure and we would wrongly 
conclude that a large fraction of energy is sent to the floor and to 
the ceiling. This is incorrect since in the near field the energy flow 
is only forward (perpendicular to the line source array). 
 

 
Figure A1-1: 
The drawing on the left, displays a polar diagram where the flow 
of energy is supposed to emanate from O, along OA for instance. 
Using such a polar diagram in the near field (right) would indicate 
an incorrect flow of energy. 
 
APPENDIX 2 
For Fresnel analysis we draw circles with λ/2 increments in their 
radii. This may appear somewhat surprising since half a 
wavelength leads to a phase opposition. One edge of the zone is in 
phase opposition to the other edge of the zone and consequently 
we would expect a small resultant SPL. Qualitatively we can 
demonstrate why Fresnel chose that value and why the SPL is not 
small but, on the contrary, reaches its maximum level. Consider 
the first zone to be divided into small but finite pieces as shown in 
figure A2-1. 
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Figure A2-1: 
The left part shows the first Fresnel zone broken into 5 pieces 
equal in sound pressure.  The right part displays the Argand 
diagram of the complex amplitudes associated with these pieces, 
and their resultant sum. 
 
OA is the resultant SPL from the first Fresnel zone and it is larger 
than OB which incorporates part of the second zone. 
 
In order to see this more rigorously, we calculate the SPL of a 
continuous line source whose height is variable. The observation 
point is 4 meters away, on the main axis (see figure A2-2).  
 

 
Figure A2-2: 
From the observation point we draw a circle of radius d. This 
circle is tangent to the line AB. Drawing a circle whose radius is 
larger (d+∆r) defines a segment of height H on AB. 
 
We normalize the SPL due to H(∆r) by the SPL arising due to the 
first Fresnel zone at the same distance, while assuming the entire 
zone to be at the center (this is equivalent to neglecting the λ/2 
variation from the center to the edge of the zone). This is pictured 

in the figure A2-3. Here we can see that the maximum SPL is not 
reached for λ/2 but for λ/2.7. The reason for this is that Fresnel 
considered 2-dimensional sources whereas we are considering only 
1-dimensional sources. Since we are interested in the qualitative 
predictions of the method we use λ/2 as a reference value. It is 
easier to remember and figure A2-3 shows that the SPL difference 
between λ/2 and λ/2.7 is only 0.5db. 
 
Finally, we note that, on average, the light intensity from the 
dominant zone is roughly 6 dB higher than the light intensity from 
the complete source. 
 

 
 
Figure A2-3: 
The normalized SPL of the segment H(∆r), defined in figure A3-2, 
displayed as a function of the increase in the radius of the circle.  
 
 

 
 
 
 
 
 
 

 

SPL{H(∆r)} / SPLfirst zone

∆r / λ 

∆r = λ/2


